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The physical system

A pendulum (consisting of a weight of mass m and a massless cord of length l)
is hanged on a solid ceiling; on this first a second, identical pendulum is fixed.
The system has two degrees of freedom: it may only move in a plane.
Energy is conserved (there is no friction), thus it is a hamiltonian system, which
may be described by its canonical momenta, p1 and p2 respectively, and its
canonical coordinates (the angles),q1 and q2.

hamilton = 1
2ml2

p2
1+2p2

2−2p1p2cos(q1−q2)
1+sin(q1−q2)2

+ mgl[3 − 2cosq1 − cosq2]

Depending on the initial conditions, the system behaves regularly (as done
in the simulation file Doppelpendel-regulaer.rtf) or shows chaotic evolution (as
in file Doppelpendel-life.rtf).

The numerical model

This physical system is modelled using the forth-order Runge-Kutta Method.
This is an iterative method for solving differential equations numerically, the
error of the solution being of the order of the step size to the power of 5 (h5).
Originally, this technique was developed around 1900 by the German mathe-
maticians C. Runge and M.W. Kutta.

For a scalar or a function y′ = g(t, y), the RK4-approximation is given by

yn+1 = yn +
h

6
[k1 + 2k2 + 2k3 + k4].

Each value is determined by the previous value and the increment h times
an estimated slope, which is a weighted average of slopes. The coefficients used
are given by:

k1 = g(xn, yn)
k2 = g(xn + h

2 , yn + k1
2 )

k3 = g(xn + h
2 , yn + k2

2 )
k4 = g(xn + h, yn + k3)
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The double pendulum is described by the following equations:
The vector y of the generalized coordinates is y = (q1, p1, q2, p2). Its derivative
y′ = g(y) gives the following tremendous expression (where Q = q1 − q2).

g(y) = y′ =


q1′
p1′
q2′
p2′

 =

= 1
ml2 ·



p1−p2cosQ
1+sin2Q

− 1
2ml2 · [2p1p2 · sinQ

1+sin2Q − p2
1+2p2

2−2p1p2cosQ
(1+sin2Q)2 · 2sinQcosQ] − mglsinq2

2p2−p1cosQ
1+sin2Q

− 1
2ml2 · [2p1p2 · sinQ

1+sin2Q − p2
1+2p2

2−2p1p2cosQ
(1+sin2Q)2 · 2sinQcosQ] − 2mglsinq1


The algorithm is organized as follows:

1. declaration and setting of variables:
generalized coordinates, hamilton and physical variables, begin and ending
time (t0, tmax)and step size h, control variables (z counting the jumps
and the energy testing variable htest, see below), RK4-coefficients, initial
conditions: starting angle of the first pendulum q0 and energy h0 (given
to the second pendulum as momentum)

2. definition of functions:
hamilton-energy function and g(q1′, p1′, q2′, p2′)

3. setting and posting of the initial conditions for the simulation run

4. testing, if the initial conditions make sense (that is if the function f(q0, e0)
is a real number)

5. creating the array a for the storage of the results and running the RK4-
algorithm

6. test during each run:

• if the system is out of reasonable physical borders (i.e. the energy is
more than doubled or halved) the simulation is stopped; this happens
for extreme initial conditions.

• If the angles q1 or q2 > 2 · π), it is set back (q1 and q2 modulo 2π.
The number of these jumps is stored, but was usually neglectable in
relation to the size of the simulation.

7. storing of a time-like index, the four generalized coordinates and the over-
all energy
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Analyzing methods

Graphical analysis

A first glimpse of the data could be done by plotting the generalized coordi-
nates (each separately) and the overall energy H. This gives an idea about the
periodicity and the conservation of the energy over time.
In figure 1 the overall energy for a simulation run (DP-01) is shown. 1

Figure 1: Hamilton of a simulation run. The energy is oscillating, which is
possibly due to rounding errors, but stays within 50 and 200 per cent of the
initial energy.

A quick idea of the interaction between the two pendulums could be gained
by comparing either the angles or the momenta with each other. The calculated
difference between the angles are shown in figure 2. For reasons of conventional
paper size, and the huge amount of data, only about half of the data is displayed.

Figure 2: Difference between the two angles q1 and q2 at a range of calculation
steps in the simulation run for the Poincare plot. See the next section for details.

The evolving system may be pictured in a phase space, giving a so-called
Poincare-plot (for the SC3-code refer to Doppelpendel-visual.rtf). In this vi-
sualization method, one plane of the (in this case) 4-dimensional phase space
is drawn; each plotted point in this plane indicates where a periodical, quasi-
periodical or chaotical trajectory returns to this plane.

1 The plotting function in SuperCollider3 is more determined for interactive use than for
display of stored data: there is no axis labelling, but a click on the picture gives the current
value. These values and the axis are explained in the text.
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Figure 3: Poincare plot of the simulation run ”DP10” (see appendix for details).
On the abscissa, the angle q1 is drawn, and on the ordinate the momentum p1.
For the plot, the program was slightly modified, in order to spare calculation
time: artificial jumps were built in, whenever the angles exceeded 2π. Then,
p2 was set to zero and p1 accordingly calculated out of the energy function

(p1 = f(q1, q2, h0))). This helped starting again at different states of the phase
plot, an provide a more complete picture.

For this project, the Poincare-plot was drawn using q1 as abscissa and p1 as
ordinate axis. Points were plotted whenever q2 = 0 and p2 > 0.

Sonification

Additionally to this graphical analysis, several approaches to sonify the re-
sults have been attempted in file Doppelpendel-Sonifikationen.rtf:

Poincare-Task

In a first attempt, temporal information of the periodicity of the system was
used2: whenever the second pendulum went through the perpendicular position
and moved to the right, the point in time was stored, and later sonified as a
rhythm of pitched beeps. (This is the same data as used for the Poincare-plot.)
A regular, periodic movement would lead to a steady beat, whereas a chaotic
movement gives no chance to find such a beat. Slight chances would indicate a
quasi-periodic movement, and may easily be detected. This behaviour may also
indicate a small overall energy in the system.
This method has been called ”Poincare-task” in this sonification.

2 The indices of the numerical calculation are proportional to the physical time t. The
index equals i = t/h, h being the step size of the RK4-algorithm.
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In the file, DP-01-poincare.mp3, a regular movement may be observed. The
two pendulums follow the same rhythm until the end.

Hints for listening to the rhythm-based audio files:

• Notes played shortly after one another, and perceived as a overdrive in the
channels are obviously a result of the filtering of data: in the code, the
following condition was used to store the time-indices:
if ( a[i][1].round(0.01) == 0.
If the pendulum moved rather slow, several indices would be stored one
after the other. This is not a huge problem, as the sound is very different
from a normal beep, and does not take much longer than a normal time
step.

• In the Poincare-Task, the beginning of a loop is marked with a sine wave.
In the next sonification (Task-Zero-Angles), the files start with 2 second
introductional sounds (which are slightly detuned) in order to assure syn-
chronization of the two channels.

Task of zero angles

A second sonification of periodicity uses information on the angles of the two
pendulums. Each point of time where a pendulum went through the perpendic-
ular position was stored. These rhythms are played simultaneously out at two
channels (i.e. left and right channel of headphones). It is a bit harder to follow
the rhythm in this task than in the Poincare-Task, but periodic, quasi-periodic
and chaotic movement may still be distinguished.
In the example DP-01-zeroangles.mp3, the same pattern persists over time (right
– left – right - right). It is not that easy to follow, as the playback is rather
slow because the sound would override too easily because the data filtering has
the same problems as mentioned above.

Modulation Task

A completely different approach treats all the information about the two
pendulums, without filtering them in the first place. This information is used
to modulate two sine waves of different frequencies (angles) and amplitudes
(canonical moments), going out on two different channels (as above). In this
example, the association link between the model and the mapping is very di-
rect, and the swinging of the two pendulums can be ”seen” as patterns. (The
brain interprets two equal (or very similar) but phase-delayed sine waves as one
circular movement.)
This is most easily perceived in a very slow playback, where the velocity (a
parameter of the sonification) was set to 30 per cent of its ”natural” value.
Compare the example DP-02-AmpAndFreq–vel-0.3.mp3.
Now the speed of the modulation may be changed dramatically, in order to
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provide a completely different sound. At 50 times of the original velocity, the
examples are very short (the clicks are artefacts that mark the loop) but give
spectral information. The changing of the timbre of these frequency clusters
changes with a changing system and should be very noisy for the chaotic case.
The example DP-02-AmpAndFreq–vel-0.3.mp3 may be compared with a dif-
ferent simulation run, DP-01-AmpAndFreq–vel-50.mp3, whose overtones sound
completely different. For comparison the files at velocity 1 (the original) and 2
(the doubled speed) are provided as well.

For a more complete analysis of the double pendulum and the sonification
tools more simulation examples have to be run and compared. In the above
examples (except of the different simulation for the Poincare plot) the initial
conditions led to a regular or quasi-perdiodic movement.

Appendix

Data

Data was stored using archives, and from the original array a (containing an
index, q1, p1, q2, p2 and the overall energy) data was extracted in various ways
in the file doppelpendel-datenextract.rtf.
The initial conditions of the simulation runs used in the examples above are the
following:

• DP10 = double pendulum 10

– starting angle of q1 = 0.1

– starting energy H0 = 10

– this leads to a starting momentum p2 = 3.146

– 400.000 time steps were taken into account for the analysis (then the
algorithm became unstable)

– there were no jumps during the calculation

• DP-01
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– starting angles of q1 = 0.71

– starting energy H0 = 4.9

– starting momentum was p1 = 0.501

– a had 1000001 entries

– there were no jumps during the calculation

• DP-02

– starting angles of q1 = −0.58

– starting energy H0 = 3.8

– starting momentum was p1 = 0.912

– a had 1000001 entries

– there were no jumps during the calculation

Resources used for this document

• Lecture notes of ”Computerorientierte Physik”, SS 2006, Prof. Chr. Gat-
tringer.

• Wikipedia: http://en.wikipedia.org

• The programming language used is ”SuperCollider3”, a programming lan-
guage and engine for real time audio synthesis, originally written by James
McCartney and now under the free GNU license. It is available for down-
load at: http://www.audiosynth.com.

I would like to thank Julian Rohrhuber and Till Bovermann for contribut-
ing to the data extracting, visualization and sonification of this project.
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